污水中氨氮高于总氮原因分析

来源:建树环保 2021-06-08 22:31:27 97

    随着工业化建设的进一步深入,城市污水的总量急剧增加,氨氮是城市污水的重要污染因子,一旦氨氮含量超标,就极易造成水体中微生物的大量繁殖,并在浮游生物生产的同时,形成水体富营养化。现代环境下,为实现水质的高效利用,进行城市污水的高效化处理至关重要,实现过程中,进行污水氨氮含量与总氮含量的关系研究是其治污处理的首要任务,本文就污水中氨氮含量高于总氮含量的原因展开系统分析。

  1、污水中氨氮与总氮的关系

  水质衡量过程中,氨氮和总氮是较为重要的两个考察指标;从属性分类上看,氨氮是总氮的基本组成之一。一般情况下,污水中的总氮含量要高于氨氮含量,其包含了各种形式的无机氮和有机氮,譬如,在无机氮中,N3O-、NO2-、NH4+、蛋白质、氨基酸等都是其重要的表现类型,而有机氮一游离氨和铵离子为主要存在形式(如图1)。同时植物性有机物的含氮量明显低于动物性有机物。

1.jpg

  需要注意的是,生活污水中含氮有机物的初始污染是水中氨氮含量的主要来源。这些污水中的氨氮因子为微生物的成长、繁殖创造了条件,极易在浮游生物快速成长的基础上,形成水体富营养化;另外,在微生物作用下,污水中的氨氮会进一步分解,并最终形成硝酸盐氮;在该反应过程中,一旦反应过程不充分,就会造成大量亚硝酸盐氮的产生,当其与蛋白质结合时会形成致癌物亚硝胺,严重危害人们的身体健康。由此可见,在实践过程中,进行污水中氨氮污染因子的控制势在必行。

  2、氨氮高于总氮原因的实验设计

  污水处理过程中,氨氮含量高于总氮含量是一种常见的污水超标现象。要实现其超标原因的有效分析,研究人员就必须注重实验操作的具体规范。

  2.1 氨氮及总氮检测的实验准备

  2.1.1 实验依据及原液准备

  污水氨氮及总氮检测过程中,确保其方法原理的控制规范是检测结果高度准确的有效保证。就氨氮检测而言,HJ537—2009《水质氨氮测定》中的蒸馏-中和滴定法是其实验操作的主要依据,而总氮的含量需按照HJ636—2012《水质总氮测定》进行规范,具体而言,其是在碱性过硫酸钾的应用下,实现污水氨氮含量消解的过程。本次实验鉴定过程中,污水的总氮含量的平均值为30.5mg/L,而氨氮含量平均值为32.2mg/L。

  2.1.2 实验仪器准备

  医用蒸汽灭菌器、超纯水器、紫外线分光光度计、比色管。在仪器应用过程中,实验人员应对其仪器的规格和型号进行有效规范,譬如,就比色管而言,其容积需保持在25mL;而分光光度计应用过程中,PELamda-25是一种有效的应用类型。

  2.1.3 实验试剂准备

  污水中氨氮及总氮含量检测是一项专业要求较高的系统实践过程。在检测操作中,试剂的类型和容量直接影响着检测结果的精确度。就氨氮检测而言,实验人员不仅要做好离子水、轻质氧化镁、硼酸吸收液的规范添加,更要对其添加的容量进行严格规范,譬如,硼酸吸收液的添加量应控制在20g,并确保添加后的稀释液总量为1000mL,另外在盐酸溶液应用中,其规格需保持在0.1023mol/L。总氮检测过程中,在保证去离子水应用的基础上,应做好碱性过硫酸钾溶液的严格规范,具体而言,在溶液配制过程中,其过硫酸钾的规格应控制在40g,而氢氧化钠的规格应控制在15g,将其溶于水后,进行氢氧化钠的充分冷却,一旦其温度达到室温后,须确保碱性过硫酸钾溶液的总量保持在1000mL。只有确保这些内容的控制合理,才能为氨氮含量及总氮含量的检测提供有效保证。

  2.2 氨氮及总氮检测的实验结果

  在确保实验仪器及试剂准备重复的基础上,按照蒸馏-中和滴定法对污水氨氮含量进行检测。具体而言,实验人员在原液的基础上,添加30mg/L的标准样品,同时按照95%~105%回收率要求,确保其平均加标的回收率控制在98.7%,实验结果显示如表1,由表1可见,氨氮测定的结果具有一定的精准性,用于实验对比较为可靠。

2.jpg

  氨氮加标平行测试过程中,实验检测其水样本底的平均值为32.2mg/L,而在碱性过硫酸钾消解紫外分光光度法应用过程中,污水总氮含量的平均值仅为30.5mg/L;同时在离子色谱法的应用下,实验人员对硝酸盐氮及亚硝酸盐氮的含量进行有效测定,实验结果表明,污水中氨氮、硝酸盐氮及亚硝酸盐氮含量的平均值为32.37mg/L。由此可见,氨氮含量与总氮的测定存在较大差距,污水氨氮含量明显高于总氮含量。

  3、污水中氨氮高于总氮的原因分析

  3.1 污水中金属离子干扰因素分析

  污水检测过程中,其水体中含量有一定的六价铬离子和三价铁离子,实验过程中,可在盐酸羟胺溶液的支撑下,实现其影响因素的有效消除。一般情况下,盐酸羟胺溶液的稀释度需保持在5%,同时添加容积要保持在1~2mL。待盐酸羟胺溶液反应充分后,可在二苯碳酰二肼分光光度法的应用下,实现其铬、铁含量的检测,结果表明,六价铬、三价铁的含量低于检出限,因而对于氨氮及总氮检查的结果没有影响。

  3.2 标准曲线绘制分析

  为实现氨氮含量与总氮含量差异的有效分析,实验人员需在实验的基础上,进行其标准曲线的有效绘制;同时在曲线绘制过程中,应注重其结构的独立性,确保检测过程不会和时间结果形成干扰。具体而言,实验人员应以25mL具塞比色管中为基础,然后在硝酸钾标准液添加的基础上,进行溶液的稀释,溶液添加规格分别为0.5、1、2、3、5、7、8mL稀释总容量保持在10mL。最后在过硫酸钾消解紫外分光光度法的应用下,实现其总氮含量的测定(表2),由此可见,分光光度法检测下,总氮的标准曲线较为规范,其符合相关系数不小于0.999的控制要求,因而不会对实验结果造成影响。

3.jpg

  3.3 消解时间分析

  氨氮及总氮含量检测过程中,化学反应的过程容易受到反应时间干扰,故实验人员需对氨氮与试剂的消解时间进行控制,确保其分别保持在20、30、40、50、60min,然后在样品冷却滞后进行盐酸添加,确保其添加容量保持在1mL,然后进行不同消解时间下的总氮含量记录,可得如下结果(表3)。由此可见,一旦消解时间低于40min,则试液检测中的硫酸钾转化率处于上升状态,其造成了总氮含量的不断增加,并在40min时,实现了总氮含量的高精度把控,然而在40min以后,其含量变化差距不大,且总氮量已经高于氨氮含量32.2mg/L的控制规格。因此,在检测过程中,氨氮与其他试剂的消解时间应控制在40min。

4.jpg

  4、实验结构验证

  污水处理过程中,氨氮高于总氮含量是较为常见的一种污染症状。在实验分析氨氮含量及总氮含量的基础上,对其金属离子、标准曲线和消解时间进行分析,可见消解时间是造成污水中氨氮含量增加的重要原因。实践过程中,一旦总氮的消解时间不够充分,则硫酸钾就会发生不完全转化,造成硝酸盐氮及亚硝酸盐氮的产生,从而使得污水中的氨氮含量明显高于总氮含量。

  5、结论

  氨氮与总氮的含量控制是水质衡量的重要指标,消解时间不充分,就会导致总氮含量的降低,从而在增加水体氨氮含量同时,形成水土富营养化。实践过程中,污水处理人员在反应试剂添加过程中,必须确保其与水体总氨的消解实践保持在40min,唯有如此,才能确保污水中氨氮含量的合理控制,继而实现污水处理质量的有效提升。

  广东建树环保科技有限公司是一家专业从事工业废水处理、工业废气处理和环境修复的环保设备研发与销售服务的企业。为工业企业和市政工程等项目提供工业废水处理、工业废气处理、有机废气VOCs处理的一体化解决方案,从“工程设计”、“工程承包”、“设备采购”、“安装调试”、“耗材销售”、“运营管理”、“环评办理”等环节提供专业的差异化服务,联系电话:135 5665 1700。

专业技术咨询
135 5665 1700